NOTICE: Due to a lapse in annual appropriations, most of this website is not being updated. Learn more.
Form submissions will still be accepted but will not receive responses at this time. Sections of this site for programs using non-appropriated funds (such as NVLAP) or those that are excepted from the shutdown (such as CHIPS and NVD) will continue to be updated.
An official website of the United States government
Here’s how you know
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
Secure .gov websites use HTTPS
A lock (
) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.
Coherence of Quantum Superpositions Through Coupling to Engineered Reservoirs
Published
Author(s)
C J. Myatt, B E. King, Q A. Turchette, C A. Sackett, D Kielpinski, Wayne M. Itano, C Monroe, David J. Wineland
Abstract
The theory of quantum mechanics applies to closed systems. In such ideal situations, a single atom can, for example, exist simultaneously in a superposition of two different spatial locations. In contrast, real systems always interact with their environment, with the consequence that macroscopic quantum superpositions (as illustrated by the Schrodinger's cat' thought-experiment) are not observed. Moreover, macroscopic superpositions decay so quickly that even the dynamics of decoherence cannot be observed. However, mesoscopic systems offer the possibility of observing the decoherence of such quantum superpositions. Here we present measurements of the decoherence of superposed motional states of a single trapped atom. Decoherence is induced by coupling the atom to engineered reservoirs, in which the coupling and state of the environment are controllable. We perform three experiments, finding that the decoherence rate scales with the square of a quantity dcescribing the amplitude of the superposition state.
Myatt, C.
, King, B.
, Turchette, Q.
, Sackett, C.
, Kielpinski, D.
, Itano, W.
, Monroe, C.
and Wineland, D.
(2002),
Coherence of Quantum Superpositions Through Coupling to Engineered Reservoirs, Nature
(Accessed October 10, 2025)