NOTICE: Due to a lapse in annual appropriations, most of this website is not being updated. Learn more.
Form submissions will still be accepted but will not receive responses at this time. Sections of this site for programs using non-appropriated funds (such as NVLAP) or those that are excepted from the shutdown (such as CHIPS and NVD) will continue to be updated.
An official website of the United States government
Here’s how you know
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
Secure .gov websites use HTTPS
A lock (
) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.
By extrapolation, we estimated cementite's elastic constants. Altogether, we studied seven Fe-C binary alloys varying from 0 to 17.3 atomic percent carbon. Thus, we measured hypoeutectoid, near eutectoid, and hypereutectoid alloys. For cementite, we report a complete set of quasiisotropic (polycrystal) elastic constants. If texture occurred, we removed its effect by using a Voigt-Reuss-Hill method. Surprisingly, for the dilatational modes, the cementite's elastic constants differ little from those of pure b.c.c. iron and are about ten percent higher for a shear mode such as the Young modulus. This indicates a tendency toward Fe-C covalent bonding. The decrease in Poisson ratio supports covalent bonding, but the small decrease indicates smaller covalent-bonding effects than expected by Pauling . Contrary to all previous reports, we find Fe3C stiffer than pure α-iron.