Skip to main content

NOTICE: Due to a lapse in annual appropriations, most of this website is not being updated. Learn more.

Form submissions will still be accepted but will not receive responses at this time. Sections of this site for programs using non-appropriated funds (such as NVLAP) or those that are excepted from the shutdown (such as CHIPS and NVD) will continue to be updated.

U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Chip-scale atomic magnetometer

Published

Author(s)

P Schwindt, Svenja A. Knappe, V Shah, Leo W. Hollberg, John Kitching, Li-Anne Liew, John Moreland

Abstract

Using the techniques of micro-electro-mechanical systems (MEMS), we have constructed a small, low-power magnetic sensor based on alkali atoms. By measuring the energy shift of the atoms' magnetic moment due to a magnetic field via a coherent population trapping resonance, we detect the magnetic flux density with a sensitivity of 50 pT Hz-1/2 at 10 Hz. The magnetic sensor has a size of 12 mm3 and dissipates 195 mW of power. Further improvements in size, power dissipation, and magnetic field sensitivity are immediately foreseeable, and such a device could provide a hand-held, battery-operated magnetometer with an atom shot-noise limited sensitivity of 0.05 pT Hz-1/2.
Citation
Applied Physics Letters
Volume
85
Issue
26

Keywords

atomic sensors, coherent population trapping, magnetometry, MEMS

Citation

Schwindt, P. , Knappe, S. , Shah, V. , Hollberg, L. , Kitching, J. , Liew, L. and Moreland, J. (2004), Chip-scale atomic magnetometer, Applied Physics Letters, [online], https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=50058 (Accessed October 10, 2025)

Issues

If you have any questions about this publication or are having problems accessing it, please contact [email protected].

Created December 26, 2004, Updated October 12, 2021
Was this page helpful?