Skip to main content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Chemical Shifts-Based Similarity Restraints Improve Accuracy of RNA Structures Determined via NMR



Chad Lawrence, Alexander Grishaev


Determination of structure of RNA via NMR is complicated in large part by the lack of a precise parameterization linking the observed chemical shifts to the underlying geometric parameters. In contrast to proteins, where numerous high-resolution crystal structures serve as coordinate templates for this mapping, such models are rarely available for smaller oligonucleotides accessible via NMR, or they exhibit crystal packing and counter-ion binding artifacts that prevent their use for the chemical shifts analysis. On the other hand, NMR-determined structures of RNA often are not solved at the density of restraints needed to precisely define all of the variable degrees of freedom. In this study we sidestep the problems of direct parameterization of the RNA chemical shifts/structure relationship, and examine the effects of imposing local fragmental coordinate similarity restraints based on similarities of the experimental secondary ribose 13C/1H chemical shifts instead. The effect of such chemical shift similarity (CSS) restraints on the structural accuracy is assessed via residual dipolar coupling (RDC)-based cross-validation. Improvements in the coordinate accuracy are observed for all of the six RNA constructs considered here as test cases, which argues for routine inclusion of these terms during NMR-based oligonucleotide structure determination. Such accuracy improvements are expected to facilitate derivation of the chemical shift/structure relationships for RNA.


RNA structure, NMR, chemical shifts, residual dipolar couplings, cross-validation, accuracy


Lawrence, C. and Grishaev, A. (2020), Chemical Shifts-Based Similarity Restraints Improve Accuracy of RNA Structures Determined via NMR, RNA, [online], (Accessed June 21, 2024)


If you have any questions about this publication or are having problems accessing it, please contact

Created September 11, 2020, Updated March 10, 2023