Skip to main content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Cellular Immobilization Within Microfluidic microenvironments: Dielectrophoresis With Polyelectrolyte Multilayers



Samuel P. Forry, D. R. Reyes, Michael Gaitan, Laurie E. Locascio


The development of biomimetic microenvironments will improve cell culture techniques by enabling in vitro cell cultures which mimic in vivo behavior1-3; however, experimental control over attachment, cellular position, or inter-cellular distances within such microenvironments remains challenging. We report here the utilization of dielectrophoresis (DEP) for rapid and controllable immobilization of suspended mammalian neurons within microfabricated microenvironments. Layer-by-layer surface modification with polyelectrolyte multilayers (PEMs) amenable to cellular attachment caused temporary DEP immobilization to persist after DEP forces were removed. Delivery of various chemicals through the microenvironment facilitated cell monitoring and characterization in response to chemical stimuli. Laminar flow through the microenvironment was used to confine solution flow, enabling specific delivery of chemicals to select immobilized cells while the remaining cells provided a in situ experimental control. Demonstrated here for mammalian neural cells, DEP immobilization and surface modification could facilitate small cell cultures within microenvironments for a variety of cell types. The ability to culture and study cells outside of their natural environment is a powerful tool for understanding cell behavior, investigating cellular response to stimuli, evaluating drug efficacy and toxicity ex vivo, and facilitating drug discovery. However, the equipment utilized in traditional cell culture methods (Petri dishes and tissue culture flasks) is quite dissimilar from the in vivo environment, and cells in culture can behave quite differently from their in vivo counterparts4-7. Continued: See attached.
Journal of the American Chemical Society


cell culture, dielectrophoresis, polyelectrolyte monolayers


Forry, S. , Reyes, D. , Gaitan, M. and Locascio, L. (2006), Cellular Immobilization Within Microfluidic microenvironments: Dielectrophoresis With Polyelectrolyte Multilayers, Journal of the American Chemical Society (Accessed April 15, 2024)
Created October 25, 2006, Updated February 17, 2017