Skip to main content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Calibration of High-Resolution X-Ray Tomography with Atomic Force Microscopy



A Kalukin, B Winn, Yong Wang, C Jacobsen, Z Levine, Joseph Fu


For two-dimensional x-ray imaging of thin films, the technique of scanning transmission x-ray microscopy (STXM) has achieved images with feature sizes as small as 40 nm in recent years. However, calibration of three-dimensional tomographic images that are produced with STXM data at this scale has not yet been described in the scientific literature, and the calibration procedure has novel problems that have not been encountered by x-ray tomography carried out at a larger scale. In x-ray microtomography, for example, one always has the option of using optical imaging on a section of the object to verify the x-ray projection measurements; with STXM, on the other hand, the sample features are too small to be resolved by light at optical wavelengths. This fact implies that one must rely on procedures with higher resolution, such as atomic force microscopy (AFM), for the calibration. Such procedures, however, generally depend on a highly destructive sectioning of the sample, and are difficult to interpret because they give surface information rather than depth information. In this article, a procedure for calibration is described that overcomes these limitations and achieves a calibration of an STXM tomography image with an AFM image and a scanning electron microscopy image of the same object. A Ge star-shaped pattern was imaged at a synchrotron with a scanning transmission x-ray microscope. Nineteen highresolution projection images of 200¿200 pixels were tomographically reconstructed into a three-dimensional image. Features in two-dimensional images as small as 40 nm and features as small as 80 nm in the three-dimensional reconstruction were resolved. Transverse length scales based on atomic force microscopy, scanning electron microscopy, x-ray transmission and tomographic reconstruction agreed to within 10 nm. Toward the center of the sample, the pattern thickness calculated from projection images was (51¿15) nm vs (80¿52) nm for tomographic reconstruction, where the uncertainties are evaluated at the level of two standard deviations.
Journal of Research of the National Institute of Standards and Technology


atomic force microscopy, scanning electron microscopy, x-ray microscopy


Kalukin, A. , Winn, B. , Wang, Y. , Jacobsen, C. , Levine, Z. and Fu, J. (2000), Calibration of High-Resolution X-Ray Tomography with Atomic Force Microscopy, Journal of Research of the National Institute of Standards and Technology, [online], (Accessed April 15, 2024)
Created October 31, 2000, Updated October 12, 2021