Skip to main content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Backbone Curve Variations on Steel Building Seismic Response



Bruce Maison, Matthew Speicher, Dimitrios Lignos


A 4-story steel moment-frame building designed according to ASCE 7 was used in a numerical parameter study to assess the effects of modeling features on peak drift demands. Features studied included strength, stiffness, ductility, and degradation along with several hysteretic models. Attention was given to ASCE 41-type backbone curves. Of particular interest was exploring the effects of degradation, in which an adaptive backbone curve was used to capture both in-cycle and cyclic degradations. Incremental dynamic analyses (IDAs) were performed using a suite of earthquake records to assess the response over a range of shaking intensities. It was found that in-cycle degradation had more influence on the response compared to cyclic degradation for the set of ground motion records that were employed. Moreover, use of the monotonic backbone alone, with its in-cycle degradation, was sufficient. In addition, it was found that increasing strength, stiffness, and/or ductility resulted in decreased peak drift demands, whereas modifying the hysteretic type (elasto-plastic, stiffness-degrading, and pinching) had little effect on peak drifts. These findings indicate that using backbone curves based on envelopes of first-cycle test data, as done in ASCE 41, can result in overly conservative seismic response predictions.
Earthquake Spectra


seismic, earthquake, steel, ASCE 41, earthquake, building, performance-based design


Maison, B. , Speicher, M. and Lignos, D. (2023), Backbone Curve Variations on Steel Building Seismic Response, Earthquake Spectra, [online],, (Accessed July 13, 2024)


If you have any questions about this publication or are having problems accessing it, please contact

Created June 2, 2023, Updated November 20, 2023