NOTICE: Due to a lapse in annual appropriations, most of this website is not being updated. Learn more.
Form submissions will still be accepted but will not receive responses at this time. Sections of this site for programs using non-appropriated funds (such as NVLAP) or those that are excepted from the shutdown (such as CHIPS and NVD) will continue to be updated.
An official website of the United States government
Here’s how you know
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
Secure .gov websites use HTTPS
A lock (
) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.
Samuel P. Forry, Meggan C. Madonna, Daneli Lopez-Perez, Nancy J. Lin, Madeleine D. Pasco
Abstract
ABSTRACT: Manual and automated methods were compared for routine screening of compounds for antimicrobial activity. Automation generally accelerated assays and required less user intervention while producing comparable results. Automated protocols were validated for planktonic, biofilm, and agar cultures of the oral microbe Streptococcus mutans that is commonly associated with dental caries. Toxicity assays for the known antimicrobial compound cetylpyridinium chloride (CPC) were validated against planktonic, biofilm forming, and 24 h biofilm culture conditions, and several commonly reported toxicity/antimicrobial activity measures were evaluated: the 50% inhibition concentration (IC50), the minimum inhibitory concentration (MIC), and the minimum bactericidal concentration (MBC). Using automated methods, three halide salts of cetylpyridinium (CPC, CPB, CPI) were rapidly screened with no detectable effect on antimicrobial activity.
Forry, S.
, Madonna, M.
, Lopez-Perez, D.
, Lin, N.
and Pasco, M.
(2016),
Automation of Antimicrobial Activity Screening, Journal of Microbial Biotechnology, [online], https://doi.org/10.1186/s13568-016-0191-2
(Accessed October 4, 2025)