An official website of the United States government
Here’s how you know
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
Secure .gov websites use HTTPS
A lock (
) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.
Automatic Clustering of Multipath Arrivals in Radio-Frequency Channels using Kurtosis
Published
Author(s)
Camillo A. Gentile
Abstract
In wireless propagation, the multipath arrivals of a transmitted signal appear clustered at the receiver. Because the notion of clusters tends to be intuitive rather than well-defined, cluster identification in channel modeling has traditionally been carried out through human visual inspection. Besides time-consuming for large-scale measurement campaigns, this approach is subjective and will vary from person to person, leading to arbitrary selection of clusters. In response to these concerns, automatic clustering algorithms have emerged in the past decade. Most, however, are laden with settings which depend on the radio-frequency environment under inspection, again leading to arbitrary selection. In this paper, we propose a novel clustering algorithm based on the kurtosis metric which, in related work, has been used precisely for its channel invariance. We compare it to two other algorithms through a standard validation method on simulated channel impulse responses from five different environments. The proposed algorithm delivers better results and, because it has only two settings which were maintained fixed across all environments, is proven robust to channel variance.
Gentile, C.
(2013),
Automatic Clustering of Multipath Arrivals in Radio-Frequency Channels using Kurtosis, IEEE International Conference on Communications, Budapest, -1, [online], https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=912445
(Accessed October 5, 2024)