Skip to main content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.


The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

An atomic clock with 10-18 instability



Andrew D. Ludlow, Nathan M. Hinkley, Jeffrey A. Sherman, Nate B. Phillips, Marco Schioppo, Nathan D. Lemke, Kyle P. Beloy, M Pizzocaro, Christopher W. Oates


Atomic clocks have been transformational in science and technology, leading to innovations such as global positioning, advanced communications, and tests of fundamental constant variation. Next-generation optical atomic clocks can extend the capability of these timekeepers, where researchers have long aspired toward measurement precision at 1 part in 1018. This milestone will enable a second revolution of new timing applications such as relativistic geodesy, enhanced Earth- and space-based navigation and telescopy, and new tests on physics beyond the Standard Model. Here, we describe the development and operation of two optical lattice clocks, both utilizing spin-polarized, ultracold atomic ytterbium. A measurement comparing these systems demonstrates an unprecedented atomic clock instability of 1.6x10-18 after only 7 hours of averaging.


atomic clock, frequency standard, optical clock, optical lattice, ytterbium
Created September 13, 2013, Updated February 19, 2017