NOTICE: Due to a lapse in annual appropriations, most of this website is not being updated. Learn more.
Form submissions will still be accepted but will not receive responses at this time. Sections of this site for programs using non-appropriated funds (such as NVLAP) or those that are excepted from the shutdown (such as CHIPS and NVD) will continue to be updated.
An official website of the United States government
Here’s how you know
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
Secure .gov websites use HTTPS
A lock (
) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.
In this paper, we look at long arithmetic progressions on conics. By an arithmetic progression on a curve, we mean the existence of rational points on the curve whose x-coordinates are in arithmetic progression. We revisit arithmetic progressions on the unit circle, constructing 3-term progressions of points in the first quadrant containing an arbitrary rational point on the unit circle. We also provide infinite families of three term progressions on the unit hyperbola, as well as conics ax^2+cy^2=1 containing arithmetic progressions as long as 8 terms.
Aziz Ciss, A.
and Moody, D.
(2016),
Arithmetic Progressions on Conics, Journal of Integer Sequences, [online], https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=922948
(Accessed October 2, 2025)