NOTICE: Due to a lapse in annual appropriations, most of this website is not being updated. Learn more.
Form submissions will still be accepted but will not receive responses at this time. Sections of this site for programs using non-appropriated funds (such as NVLAP) or those that are excepted from the shutdown (such as CHIPS and NVD) will continue to be updated.
An official website of the United States government
Here’s how you know
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
Secure .gov websites use HTTPS
A lock (
) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.
On the anisotropic attenuation behavior of the flexure mode of carbon fiber composites
Published
Author(s)
Brian M. Burks, Marvin A. Hamstad
Abstract
In this work a coupled experimental-numerical approach was developed to study the anisotropic far field attenuation behavior of plate-type unidirectional carbon fiber composites. Experimentally a technique that utilizes a time-frequency analysis to determine the frequency specific far field attenuation coefficient was developed, and used to evaluate the frequency specific attenuation coefficient of the flexure mode for both principal in-plane propagation directions. Numerically a technique for tuning finite element models to match the experimentally measured anisotropic attenuation behavior via incorporating Rayleigh damping into the models was developed. The ability of numeric models to realistically capture the far-field attenuation behavior leads to the possibility of using simulation to perform probability of detection studies for a given flaw/damage type. The numeric tuning technique was found to work well over a narrow bandwidth of interest (e.g., windowed ultrasonic signals), but was not robust enough to consider broadband sources (e.g., acoustic emissions).
Proceedings Title
19th International Conference on Composite Materials
Burks, B.
and Hamstad, M.
(2013),
On the anisotropic attenuation behavior of the flexure mode of carbon fiber composites, 19th International Conference on Composite Materials, Montreal, -1, [online], https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=913662
(Accessed October 28, 2025)