Skip to main content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Advanced sensing development to support accuracy assessment for industrial robot systems



Guixiu Qiao, Jonathan H. Garner


Manufacturers currently struggle with the assessment of a machine/robots' accuracy degradation that limits the efficiency of machine/robots in high precision applications. Current best practice in industry is to inspect the final products or add redundancies (local calibration etc.) during the process to determine the machine's accuracy and performance. These create complexities in the process and increase the maintenance costs of high leverage applications such as high precision robot operations (welding, robotic drilling/riveting, and composite material layout), in-process metrology, and machines in mobile applications. A higher speed, more precise control of position and orientation is required to remedy these complexities. A novel smart target was designed at NIST to integrate with a vision system to acquire high-accuracy, real-time 6‐D (six-dimensional x, y, and z position, roll, pitch, and yaw orientation) information. This paper presents the development of the smart target and the image processing algorithm to output 6-D information. A use case is presented using the smart target on universal robots (UR3 and UR5) to demonstrate the feasibility of using the smart target to perform the robot accuracy assessment.
Proceedings Title
ASME International Manufacturing Science and Engineering Conference
Conference Dates
June 22-26, 2020
Conference Location
Cincinnati, OH


Advanced sensing, Accuracy assessment, Robot Systems, Robot Performance Degradation


Qiao, G. and Garner, J. (2020), Advanced sensing development to support accuracy assessment for industrial robot systems, ASME International Manufacturing Science and Engineering Conference, Cincinnati, OH, [online], (Accessed February 24, 2024)
Created June 25, 2020, Updated July 1, 2020