An official website of the United States government
Here’s how you know
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
Secure .gov websites use HTTPS
A lock (
) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.
V Boyer, L Lising, S L. Rolston, William D. Phillips
Abstract
An atomic clock works by comparing the frequency of a local oscillator (a micrwave generator) with the hyperfine transition of the cesium atom at 9.2 GHz. In general, the precision of a clock is limited by the observation time. For an atomic clock, it is the time of free flight of the atoms between the two microwave pulses used to probe the atomic transition.In an earth bound fountain clock, using laser cooling technology, the time of flight is limited by gravity to about half a second (the atoms fall). In order to increase the time of flight and the accuracy, it is necessary to operate in microgravity. The PARCS project (Primary Atomic Reference Clock in Space) aims at building such a clock which will operate in the International Space Station. It is expected that, although the atoms will not fall under gravity, the time of observation will be limited by the thermalexpension of the atomic cloud. To achieve a time of flight of several seconds, we will have to implement the most advanced laser cooling techniques, and reach unprecedented low temperatures.I will present one the techniques that we are currently studying in our laboratory, called Raman cooling.
Citation
Advanced Laser Cooling for the Atomic Space Clock
Pub Type
Others
Keywords
advanced laser cooling, atomic clock, atomic space clock, cesium clock, laser cooling, microgravity, PARCS, time
Citation
Boyer, V.
, Lising, L.
, Rolston, S.
and Phillips, W.
(2021),
Advanced Laser Cooling for the Atomic Space Clock, Advanced Laser Cooling for the Atomic Space Clock
(Accessed December 15, 2024)