Skip to main content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Active Vibration-induced PM Noise Control in Optical Fibers: Preliminary Studies

Published

Author(s)

David A. Howe, Archita Hati, Craig Nelson, Jennifer A. Taylor, Neil Ashby

Abstract

Vibration causes mechanical distortions in fiber-optic transmission lines that induce time (phase) fluctuations. RF systems are increasingly using optical fibers in various ways and must occasionally operate in environments with acoustic and structure-born vibration. A scheme is described which enables electronic suppression and cancellation of vibration-induced spurious phase noise in an optical fiber wound on a spool. The scheme is applied to an opto-electronic oscillator (OEO). Close-to-carrier spectral lines often occur due to mechanical vibration of state-of-the-art oscillators. Passive vibration-suppression schemes (shock mounts, isolation chambers, etc.) do not always adequately reduce discrete line spectra that originate from vibration effects. However, vibration can be readily detected and measured by use of accelerometers. One can correct for these low-frequency vibration artifacts by subtracting a digitally-generated version of the artifacts based on their detection. This approach is generically referred to as ¿active noise control¿ and is used for selective noise-cancellation, room acoustic and vibration isolation, vibration suppression in video recording, active magnetic shielding, and other situations that require external noise cancellation or suppression. Active noise control can be applied to virtually all systems and applications that are subject to vibration-induced PM noise. We present simulation results in several cases representing typical vibrating oscillator scenarios. We report progress and experiences with operational hardware.
Proceedings Title
Proc. 2007 Joint Mtg. IEEE Intl. Freq. Cont. Symp. and EFTF Conf.
Conference Dates
May 29-June 1, 2007
Conference Location
, USA

Keywords

acceleration sensitivity, noise cancellation, noise measurement, optical, optical fiber, oscillator, phase noise, vibration measurement

Citation

Howe, D. , Hati, A. , Nelson, C. , Taylor, J. and Ashby, N. (2007), Active Vibration-induced PM Noise Control in Optical Fibers: Preliminary Studies, Proc. 2007 Joint Mtg. IEEE Intl. Freq. Cont. Symp. and EFTF Conf., , USA, [online], https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=50549 (Accessed April 24, 2024)
Created May 28, 2007, Updated October 12, 2021