Skip to main content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Absolute and relative stability of an optical frequency reference based on spectral hole burning in Eu3+:Y2SiO5

Published

Author(s)

David R. Leibrandt, M Thorpe, Chin-Wen Chou, Tara M. Fortier, Scott A. Diddams, Till P. Rosenband

Abstract

We present four frequency comparison measurements designed to investigate the performance of an optical frequency reference based on spectral hole burning in Eu$3+:Y2SiO5. The first frequency comparison, between a single unperturbed spectral hole and a hydrogen maser, demonstrates a fractional frequency drift rate of 5 × 10-18/s. Optical frequency comparisons between a pattern of spectral holes, a Fabry-P\'erot cavity, and an Al+ optical clock show a short term stability of 1 × 10-15√τ that averages down to 2.5+1.1-0.5 × 10-16 at τ = 540~s. Finally, spectral hole patterns in two different Eu3+:Y2SiO5 crystals located in the same cryostat are compared yielding a short term stability of 7 × 10-16 √τ that averages down to 3.4+3.2-0.8 × 10-17 at τ = 410~s.
Citation
Physical Review Letters
Volume
111

Keywords

Hole burning spectroscopy, Metrological applications, optical frequency synthesizers for precision spectroscopy
Created December 6, 2013, Updated February 19, 2017