Skip to main content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Ab Initio Structure of the Active Site of Phosphotriesterase

Published

Author(s)

Morris Krauss

Abstract

This research exploits two recent developments to obtain a fundamental understanding of the metalloenzyme active site using the bi-metallic enzyme phosphotriesterase as an example of this class. First, is the theoretical prediction that the structure and spectroscopy of a native metalloenzyme active site is qualitatively determined by the supermolecule complex of the metal(s) and the first shell of ligandswith proper charge states including waters directly bonded to ionic ligands. The second is the development of an effective potential for representing the molecular environment interacting with an all-electron active site in the quantum Hamiltonian. The GAMESS suite of electronic structure codes has implemented this new methodology, effective fragment potentials (EFP), to make theoretical calculations on structure, spectroscopy, and reactivity tractable for systems involving hundreds of atoms. Since there are transition metal cations at the active site of these enzymes, the all-electron part of the complex is calculated with relativistic compact effective potentials (CEP) and their concomitant basis sets. A realistic representation of the active site with its protein environment can be obtained using a combination of the CEP and EFP. This presentation will determine the inherent electronic and structural characteristics of phosphotriesterase using ab-initio quantum mechanical methods. A single x-ray structure for the Zn-Zn enzyme is leveraged to obtain the structure of the Cd-Cd enzyme and to examine the consequences of protonating the active site.
Proceedings Title
Journal of Chemical Information and Computer Sciences
Volume
41
Issue
1
Conference Dates
March 26-30, 2000
Conference Location
San Francisco, CA
Conference Title
219th National Meeting of the American Chemical Society

Keywords

effective core potentials, effective fragment potentials, enzyme active site, metal substitution, phosphotriesterase, protonate active site

Citation

Krauss, M. (2001), Ab Initio Structure of the Active Site of Phosphotriesterase, Journal of Chemical Information and Computer Sciences, San Francisco, CA (Accessed March 29, 2024)
Created February 1, 2001, Updated February 19, 2017