Skip to main content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Richard Mirin

Publications

Tunable quantum beat of single photons enabled by nonlinear nanophotonics

Author(s)
Qing Li, Anshuman Singh, Xiyuan Lu, John R. Lawall, Varun B. Verma, Richard P. Mirin, Sae Woo Nam, Kartik A. Srinivasan
Integrated photonics is a promising approach for scalable implementation of diverse quantum resources at the chip-scale. Here, we demonstrate the integration of

Single-scan acquisition of multiple multidimensional spectra

Author(s)
Travis M. Autry, Galan Moody, James M. Fraser, Corey A. McDonald, Richard P. Mirin, Kevin L. Silverman
Multidimensional coherent spectroscopy is a powerful tool for understanding the ultrafast dynamics of complex quantum systems. To fully characterize the

Quantum Frequency Conversion of a Quantum Dot Single-Photon Source on a Nanophotonic Chip

Author(s)
Anshuman Singh, Qing Li, Shunfa Liu, Ying Yu, Xiyuan Lu, Christian Schneider, Sven Hofling, John R. Lawall, Varun B. Verma, Richard P. Mirin, Sae Woo Nam, Jin Liu, Kartik A. Srinivasan
Single self-assembled InAs/GaAs quantum dots are promising bright sources of indistinguishable photons for quantum information science. However, their

Towards a source of entangled photon pairs in gallium phosphide

Author(s)
Paulina S. Kuo, Peter G. Schunemann, Mackenzie Van Camp, Varun B. Verma, Thomas Gerrits, Sae Woo Nam, Richard P. Mirin
We investigate parametric down-conversion in orientation-patterned GaP. Pumped at 865 nm, the signal and idler are at 1350 nm and 2400 nm, respectively.

Integrated transition edge sensors on lithium niobate waveguides

Author(s)
Thomas Gerrits, Adriana E. Lita, Richard P. Mirin, Sae Woo Nam, Jan P. Hoepker, Stephan Krapick, Harald Herrmann, Raimund Ricken, Victor Quiring, Christine Silberhorn, Tim J. Bartley
We show the proof-of-principle detection of light at 1550 nm coupled evanescently from a lithium niobate waveguide to a superconducting transition edge sensor
Created July 30, 2019