Skip to main content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

JD Deschenes (IntlAssoc)

Publications

Low-Loss Reciprocal Optical Terminals for Two-Way Time-Frequency Transfer

Author(s)
William C. Swann, Laura C. Sinclair, Isaac H. Khader, Nathan R. Newbury, Jean-Daniel Deschenes, Hugo Bergeron
Optical two-way time-frequency transfer (O-TWTFT) over atmospheric free-space paths requires low- loss, single-mode, bi-directional and fully reciprocal optical

Femtosecond synchronization of optical clocks over free-space links

Author(s)
Jean-Daniel Deschenes, Laura C. Sinclair, Fabrizio R. Giorgetta, William C. Swann, Esther Baumann, Hugo Bergeron, Michael A. Cermak, Nathan R. Newbury
The use of optical clocks/oscillators in future ultra-precise navigation, gravitational sensing, and relativity experiments will require time comparison and

A compact optically coherent fiber frequency comb

Author(s)
Laura C. Sinclair, Jean-Daniel Deschenes, Lindsay I. Sonderhouse, William C. Swann, Isaac H. Khader, Esther Baumann, Nathan R. Newbury, Ian R. Coddington
We describe design and operation of a robust self-referenced, optically coherent frequency comb. The system robustness is derived from a combination of an

Patents

Powerpoint slide, showing via map and photograhpy, the distance from NIST Boulder to Valmont Butte

Optical Time Distributor and Process for Optical Two-Way Time-Frequency Transfer

NIST Inventors
Laura Sinclair , Nathan R Newbury , William C. Swann and JD Deschenes
Patent Description The invention is a method to compare and synchronize "clocks" (i.e. local timescales) through optical links across free space, which include open air paths through the atmosphere to other terrestrial sites or to satellites, as well as satellite-to-satellite paths. The challenge is
Created October 1, 2019, Updated June 15, 2021