Skip to main content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

NIST Scientists Win 2014 Rank Prizes for Chip-Scale Atomic Clock

Close up of the NIST chip-scale atomic clock
Credit: NIST

The physics package of the NIST chip-scale atomic clock includes (from the bottom) a laser, a lens, an optical attenuator to reduce the laser power, a waveplate that changes the polarization of the light, a cell containing a vapor of cesium atoms, and (on top) a photodiode to detect the laser light transmitted through the cell. The tiny gold wires provide electrical connections to the electronics for the clock.

Physicists John Kitching and Svenja Knappe of the National Institute of Standards and Technology (NIST) will receive 2014 Rank Prizes in optoelectronics "for the creation and demonstration of the first chip-scale atomic clock."

Sharing the prize will be Leo Hollberg, who hired Kitching and Knappe at NIST and led their research group in 2004 when the chip-scale atomic clock was invented.* Hollberg left NIST in 2008 and is now a member of the physics faculty at Stanford University (Palo Alto, Calif.).

The Rank Prizes are presented every two years by the charitable Rank Foundation in the United Kingdom. The prizes are awarded to individuals who have made a significant contribution to certain scientific fields, including optoelectronics, "where an initial idea has been carried through to practical applications that have, or will, demonstrably benefit mankind." Lord Rank established the foundation to benefit fields related to his career, including, in the case of optoelectronics, the film industry.

NIST's chip-scale atomic clock made highly accurate timekeeping portable. This is useful, for example, when navigating locations where GPS doesn't work such as in underwater resource exploration. Clocks of a similar basic design were commercialized several years ago. NIST's early experimental chip-scale atomic clock recently went on display in the Smithsonian Institution's Time and Navigation exhibit (http://timeandnavigation.si.edu/).

Kitching, Knappe and Hollberg also developed a spinoff technology, chip-scale atomic magnetometers, first introduced in 2005. Kitching and Knappe are now studying the possible use of these devices in medical applications such as measuring human brain activity.**

The Rank Prizes will be awarded at a ceremony in London in February 2014. The prize includes 15,000 British pounds (approximately $23,000) each for Kitching and Knappe.

For more on the prize, see www.rankprize.org/.
 

* See 2004 NIST news release, "NIST Unveils Chip-Scale Atomic Clock."
Released May 28, 2013, Updated January 8, 2018