Technical advances in the fabrication of micro- and nano-structures has recently led to, among other things, the laser cooling of mechanical resonators down to their ground-state of mechanical motion [1,2]. Current experiments seek to utilize "cold" mechanical transducers for a variety of applications, ranging from precision force measurements to noise-free and efficient quantum translation of microwave and optical signals [3,4,5]. In this talk I will discuss our efforts at Caltech to employ phonon counting techniques to measure, prepare, and entangle the mechanical state of nanoscale optomechanical resonators.
[1] J. D. Teufel, T. Donner, Dale Li, J. W. Harlow, M. S. Allman, K. Cicak, A. J. Sirois, J. D. Whittaker, K. W. Lehnert & R. W. Simmonds, "Sideband cooling of micromechanical motion to the quantum ground state," Nature, v475, pg. 359–363, July 11, 2011.
[2] Jasper Chan, T. P. Mayer Alegre, Amir H. Safavi-Naeini, Jeff T. Hill, Alex Krause, Simon Gröblacher, Markus Aspelmeyer & Oskar Painter, "Laser cooling of a nanomechanical oscillator into its quantum ground state," Nature, v478, pg. 89–92, October 6, 2011.
[3] J. Bochmann, A. Vainsencher, D. D. Awschalom, and A. N. Cleland, Nat Phys 9, 712 (2013),
[4] T. Bagci, A. Simonsen, S. Schmid, L. G. Villanueva, J. Zeuthen, E.and Appel, J. M. Taylor, A. Srensen, K. Usami, S. A., and E. S. Polzik, Nature 507, 81 (2014).
[5] R. W. Andrews, R. W. Peterson, T. P. Purdy, K. Cicak, R. W. Simmonds, C. A. Regal, and K. W. Lehnert, Nat. Phys. 10, 321 (2014).