Skip to main content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

PopSci's 2nd Annual Brilliant 10

He's harnessed the bizarre quantum world and made it do his bidding.

A century after the discovery of quantum mechanics, physicists are still unsure what to make of it, but they are making things with it--machines that capitalize on particles' weird ability to exist in two or more states at once, and their habit of freezing into a single state when observed. Sae Woo Nam, a 33-year-old physicist, recently built the world's most sensitive photon detector. By interacting with the spooky quantum world, his device could make coded messages uncrackable.

When industry or government officials send a private
e-mail, they convert it to a string of 1's and 0's, then merge it with a string of random numbers. The result is so garbled, only someone possessing the random string can decode it. The random string is, therefore, the "key." It is sent first--a transmission that must occur in total secrecy.

Scientists have long wanted to use photons to send secret keys, but until now the technology hasn't been precise enough. Theoretically, each 1 and 0 of the key could be encrypted on a single photon, then randomly polarized at some known angle--anywhere from straight up and down to perfectly flat. Eavesdropping would require intercepting the photons, copying them, then sending them on their way. Since due to quantum mechanics, it's impossible to perfectly measure a photon's polarization, an eavesdropper will find himself in a quandary: Unsure of the photons' original states, he must guess when he retransmits them. His mistakes potentially alert the message's recipient to the tampering. But recipients have lacked a way to assess incoming single photons, so they were effectively blind. Enter Nam. His device detects single photons by reading the faint heat pulses they generate in superconducting tungsten cooled to 1/10 of a degree above absolute zero. One might expect the maker of such a precise machine to be a cautious type. But Nam likes to dye his hair odd colors and has been known to enter a 200-mile bike race on the spur of the moment. His former adviser, Stanford physicist Blas Cabrera, says that, thanks to that energy, Nam does the work of three. "I like thinking about lots of random different things," Nam says, most unprecisely.

--JR Minkel

Created October 2, 2017, Updated July 18, 2019