Take a sneak peek at the new NIST.gov and let us know what you think!
(Please note: some content may not be complete on the beta site.).

View the beta site
NIST logo

Publication Citation: A Characterization of Probe Dynamic Behaviors in Critical Dimension Atomic Force Microscopy

NIST Authors in Bold

Author(s): Shaw C. Feng; Che B. Joung; Theodore V. Vorburger;
Title: A Characterization of Probe Dynamic Behaviors in Critical Dimension Atomic Force Microscopy
Published: March 17, 2008
Abstract: Critical Dimension (CD) Atomic Force Microscopy (AFM) is a primary means to measure the geometric shapes of walls and trenches on the nanometer scale in laboratories supporting the electronic industry. However, with CD-AFM, it is difficult to predict the measurement bias arising from the compliance of the AFM probe. The issue becomes particularly important when nanometer uncertainties are required and CD tips are used as high resolution probes. In order to estimate the probe deflections due to surface intermittent contact and the resulting dimensional biases and uncertainties, we have developed finite element models for simulating dynamic behavior of AFM cantilevers with a CD tip attached. Probe tip and cantilever beam responses to intermittent contact between the probe tip and sample surface are computed using the finite element method. Using the commercially available software system, Simulia*, intermittent contacts with a wall and a horizontal surface are computed and modeled, respectively. The responses of the probe to interaction forces between the sample surface and the probe tip are shown in both time and frequency domains.
Proceedings: Scanning 2008
Pages: 2 pp.
Location: Gaithersburg, MD
Dates: April 15-17, 2008
Keywords: Atomic force, Cantilever, Critical Dimension, Compliance, Microscopy, Nanometrology, Probe modeling, Scanned probe
Research Areas: Nanomanufacturing
PDF version: PDF Document Click here to retrieve PDF version of paper (75KB)