NIST logo

NIST Quantum Cryptography Highlighted in New Journal of Physics

Recent research has shown that the security of a key string of finite length can only be assured for key strings of relatively long lengths, and this understanding has underscored the importance of high-speed systems that maximize key production rates. The successful efforts at NIST in quantum information research are represented in two articles in the latest issue of the New Journal of Physics: Focus on Quantum Cryptography: Theory and Practice.


In the first article, "1310 nm differential-phase-shift QKD system using superconducting single-photon detectors", generated in the collaboration between ITL and EEEL, reports the use of the high timing resolution (<100 ps) of superconducting nanowire single-photon detectors to demonstrate a 2.5 GHz quantum key distribution (QKD) system operating at 1310 nm. This wavelength is particularly well suited for high-speed and long-distance QKD in optical fiber when the same fiber is being used for 1550-nm telecommunications signals. The detection system is shown to significantly outperform schemes based on silicon avalanche photodiodes, and supports siftedkey production rates up to 10 kbit/s over 50 km of fiber.

The second article, "Programmable instrumentation and gigahertz signaling for single-photon quantum communication systems", reports the results from the collaboration between ITL and PL in data-handling electronics necessary to support the operation of QKD and other single-photon-communication systems at GHz rates. Providing subnanosecond time tags at such rates can result in significant amounts of data for processing, and NIST systems, based on field-programmable gate arrays, perform QKD post-processing at rates sufficient to produce quantum-generated key bits at rates above 1 Mb/s. Significant advances in timing resolution at high counting rates are achieved with time-division demultiplexing techniques from telecommunications practice, and systems under test can realize 100 ps detection time bins at count rates in the GHz regime.

 

*

 

Project Mission
To conduct quantum information related research to:
blue bullet
Provide solutions for advanced quantum information science and technology to enhance US industrial competitiveness.
blue bullet
Develop and exploit new calibration and metrology techniques to achieve standardization in the area of quantum information and communication.
blue bullet
Provide an infrastructure for quantum communication metrology, testing, calibration, and technology development.
Small horizontal rule
blue bullet About Us
blue bullet Publications
blue bullet Links
blue bullet Collaborations
blue bullet Team
blue bullet Developments
blue bullet Opportunities
Small horizontal rule

R&D 100 Award (2007)


IET Finalist Award (2007)


DoC Silver (2008) and Bronze (2005) Medals

ITL Outstanding Authorship (2007)

Small horizontal rule
Most Resent Publications
Lijun Ma, S Nam, Hai Xu, B Baek, Tiejun Chang, O Slattery, A Mink and Xiao Tang, " 1310 nm differential-phase-shift QKD system using superconducting single-photon detectors ". New Journal of Physics, Vol. 11, April 2009.

Alan Mink, Joshua C Bienfang, Robert Carpenter, Lijun Ma, Barry Hershman, Alessandro Restelli and Xiao Tang, " Programmable instrumentation and gigahertz signaling for single-photon quantum communication systems ". New Journal of Physics, Vol. 11, April 2009.

Lijun Ma, Alan Mink and Xiao Tang, "High Speed Quantum Key Distribution over Optical Fiber Network System ", Journal of Research of the National Institute of Standards and Technology, Vol. 114, Number 3, Page 149, May- June 2009.

A. Mink, S. Frankel, and R. Perlner, " Quantum Key Distribution (QKD) and Commodity Security Protocols: Introduction and Integration ", International Journal of network security and its applications, Vol. 1, No. 2, July 2009.

Lijun Ma, Oliver Slattery, Tiejun Chang and Xiao Tang, " Non-degenerated sequential time-bin entanglement generation using periodically poled KTP waveguide ", Optics Express, Vol. 17 Issue 18, pp.15799-15807 (2009).

Lijun Ma, Oliver Slattery and Xiao Tang, " Experimental study of high sensitivity infrared spectrometer with waveguide-based up-conversion detector ", Optics Express Vol. 17, Issue 16, pp. 14395–14404 (2009).

Xiao Tang, Lijun Ma, Oliver Slattery, “Single photon detection and spectral measurement in near infrared region using up-conversion technology” invited talk, presented at LPHYS09, Barcelona, Spain, July 13-17, 2009.

Lijun Ma, Oliver Slattery, Tiejun Chang and Xiao Tang, “Sequential time-bin entanglement generation using periodically poled KTP waveguide”, CLEO/ IQEC (Optical Society of America, Washington, DC, 2009), JWA85.

Xiao Tang, Lijun Ma, Oliver Slattery, “Single photon detection and spectral measurement in near infrared region using up-conversion technology” invited talk, presented at LPHYS09, Barcelona, Spain, July 13-17, 2009.

Burm Baek, Lijun Ma, Alan Mink, Xiao Tang and Sae Woo Nam, " Detector performance in long-distance quantum key distribution using superconducting nanowire single-photon detectors ", Proc. SPIE, Vol. 7320, 73200D (2009).

Oliver Slattery, Alan Mink, and Xiao Tang, " Low noise up-conversion single photon detector and its applications in quantum information systems ", Proc. of SPIE Vol. 7465, 74650W, 2009.

Oliver Slattery, Lijun Ma and Xiao Tang, " Optimization of photon pair generation in dual-element PPKTP waveguide ", Proc. of SPIE Vol. 7465, 74650K, 2009.

Oliver Slattery, Lijun Ma and Xiao Tang, “High-Speed Coincidence Photon Pair Generation by Dual-Element PPKTP Waveguide over GHz repetition rate”, submitted to Frontier in Optics 2009 (the 93rd annual meeting of Optical Society of American, San Jose, October, 2009). WERB review approved.

Contact

David Su
(301) 975-6194
david.su@nist.gov