Quantum Nature of Light and MatterObjectives: to explore fundamental aspects of the quantum nature of light and cold atomic matter, including their interactions; to develop applications relating to metrology and other areas of NIST’s mission, including measurement at and beyond the standard quantum limit; to advance our understanding and applications of cold atomic matter including its relevance to quantum information; to improve our understanding of complex manybody quantum systems; and to simulate quantum systems which may be inaccessible by conventional means. Intended Outcomes and Background This topic area focuses on nonclassical states of light and analogous states of matter. We study these quantum features in situations that range from the generation of quantum light in atomic vapors and in condensed matter systems, to the behavior of mechanical oscillators at the quantum level, to the impact of quantum light on quantum degenerate atomic gases. The latter part of the 20th century saw both the recognition of and production of radiation that cannot be produced by the motion of classical charges and currents. Squeezed light, single photons, and Fock or number states of light are among the nonclassical phenomena that were realized, while remaining experimentally challenging. Some of these phenomena allowed optical measurement with precision below standard quantum uncertainties like the shotnoise limit, while others enabled nonintuitive phenomena like the violation of Bell’s inequalities. Today NIST is a leader in developing this kind of nonclassicality for metrology and other practical applications, and in extending such quantum behavior to new physical platforms. We have developed fourwavemixing (4WM) in atomic vapor as a viable technique for creating bright, spatially multimode pairs of light beams with high relative intensity squeezing. We have developed quantum dots as reliable sources of single photons and have developed the tools to entangle the photons from such dots. We are creating micromechanical devices whose mechanical vibration can approach the quantum ground state, opening the way to applying the concepts of nonclassicality in a radically new physical system. And we are using atomicgas BoseEinstein condensates, the atomwave analogs of laser light, as a target for imprinting the nonclassical character of light onto a macroscopic quantum atomic gas. Our goals include: evaluating quantum light, atoms, and fabricated micromechanical systems for metrology beyond the standard quantum limits; the development of quantum information transfer between different physical qubit platforms according to which ones are most appropriate for a given function; and the fundamental study of quantum phenomena such as measurement and the quantumclassical interface. Highlights and Accomplishments
Press Releases
