NIST logo

Publication Citation: Raman spectroscopy based measurements of carrier concentration in n-type GaN nanowires grown by plasma-assisted molecular beam epitaxy

NIST Authors in Bold

Author(s): Lawrence H. Robins; Elizabeth Horneber; Norman A. Sanford; Kristine A. Bertness; John B. Schlager;
Title: Raman spectroscopy based measurements of carrier concentration in n-type GaN nanowires grown by plasma-assisted molecular beam epitaxy
Published: Date Unknown
Abstract: The carrier concentration in ensembles of n-type GaN nanowires (NWs) grown by plasma-assisted molecular beam epitaxy was determined by curve-fitting analysis of Raman spectra, based on modeling of the carrier concentration dependence of the longitudinal phonon plasmon (LPP+) frequency. NWs from 12 growth runs were examined. For these growth runs, the carrier concentration determined from modeling of the Raman results ranged from less than 7×1015 cm3 to (2.59  0.22)×1017 cm3. The frequency of a surface optical (SO) mode of the NWs, at  29.5 cm1 below the LPP+ mode, shows a similar dependence on carrier concentration to the LPP+ mode. Simultaneous excitation of the NWs by a 3.81 eV (325 nm) UV laser, with intensity at the sample of 0.7 W/cm2, induced an increase in the average carrier concentration measured by Raman (as compared to measurements without UV excitation) of only (4  5)×1015 cm3. This result implies that surface depletion does not have a significant effect on the Raman carrier concentration measurements (even in the absence of UV excitation). Additional sample preparation was done to examine the contribution of GaN material with a faceted non-nanowire morphology, referred to as the ,matrix layerŠ, that is present in some samples. Subtraction of the matrix layer contribution produced a decrease of (9  7)×1015 cm3 in the measured carrier concentration for run B982, and had an insignificant effect on the measured carrier concentration for run B738. The effect of immersion of undoped NWs (from run C024) and doped NWs (from run C144) in high dielectric constant oil was examined. The LPP+ frequencies in the undoped and doped NWs show downshifts of similar magnitude with oil immersion. This result implies that the LPP+ mode has bulk plasmon rather than surface plasmon character.
Citation: Journal of Applied Physics
Keywords: carrier concentration, gallium nitride, longitudinal optical phonon, nanowire, phonon-plasmon coupling, Raman spectroscopy, surface optical phonon, bulk plasmon, surface plasmon
Research Areas: Optical microscopy, Characterization, Nanometrology, and Nanoscale Measurements