Take a sneak peek at the new NIST.gov and let us know what you think!
(Please note: some content may not be complete on the beta site.).

View the beta site
NIST logo

Publication Citation: Development of a Molecular Dynamics Model of Thermal Reactivity in Polymers

NIST Authors in Bold

Author(s): Marc R. Nyden;
Title: Development of a Molecular Dynamics Model of Thermal Reactivity in Polymers
Published: June 01, 1998
Abstract: Thermal reactivity is an important consideration that impacts the way polymers and the materials that are made from them are processed and used. This realization has provided motivation for the development of a predictive model that can simulate the chemical behavior of large molecules at high temperatures. The research conducted in this laboratory has focused on the application of molecular modeling techniques to identify factors that affect the condensed phase thermal degradation chemistry of polymers in ways that result in a reduction in their flammability. This effort has culminated in the development of a novel computer program, hereafter called MD_REACT, based on molecular dynamics (MD). The feature that distinguished MD_REACT from other MD codes is that it allows for the formation of new bonds from free radical fragments that are generated when bonds in the polymer break and, thereby, accounts for the chemical reactions that play a major role in the thermal degradation process. The purpose of this paper is to provide an overview of the progress we have made in the development of an integrated model that possesses the capability to model thermal degradation in a wide range of polymers.
Proceedings: BCC Conference on Flame Retardancy, 9th Annual. Proceedings
Location: Stamford, CT
Dates: June 1-3, 1998
Keywords: dynamics, polypropylene, unimolecular reactions
Research Areas: Building and Fire Research
PDF version: PDF Document Click here to retrieve PDF version of paper (2MB)