Take a sneak peek at the new NIST.gov and let us know what you think!
(Please note: some content may not be complete on the beta site.).

View the beta site
NIST logo

Publication Citation: Towards NFIQ II Lite: Self-Organizing Maps for Fingerprint Image Quality Assessment

NIST Authors in Bold

Author(s): Elham Tabassi;
Title: Towards NFIQ II Lite: Self-Organizing Maps for Fingerprint Image Quality Assessment
Published: February 03, 2014
Abstract: Fingerprint quality assessment is a crucial task which needs to be conducted accurately in various phases in the biometric enrolment and recognition processes. Neglecting quality measurement will adversely impact accuracy and efficiency of biometric recognition systems (e.g. verification and identification of individuals). Measuring and reporting quality allows processing enhancements to increase probability of detection and track accuracy while decreasing probability of false alarms. Aside from predictive capabilities with respect to the recognition performance, another important design criteria for a quality assessment algorithm is to meet low computational complexity requirement of mobile platforms used for enrolment in national biometric systems, by military and police forces. We propose a computationally efficient means of predicting biometric performance based on a combination of unsupervised and supervised machine learning techniques. We train a self-organizing map (SOM) to cluster blocks of fingerprint images based on their spatial information content. The output of the SOM is a high-level representation of the finger image, which forms the input to a random forest trained to learn the relationship between the SOM output and biometric performance. The quantitative evaluation demonstrates that our proposed quality assessment algorithm is a reasonable predictor of performance.
Citation: NIST Interagency/Internal Report (NISTIR) - 7973
Keywords: Biometric Quality, Fingerprint, Fingerprint Quality, Machine Learning, Self-Organizing Maps, Image processing
Research Areas: Biometrics
PDF version: PDF Document Click here to retrieve PDF version of paper (937KB)