Take a sneak peek at the new NIST.gov and let us know what you think!
(Please note: some content may not be complete on the beta site.).

View the beta site
NIST logo

Publication Citation: On-chip CO2 control for microfluidic cell culture

NIST Authors in Bold

Author(s): Samuel P. Forry; Laurie E. Locascio;
Title: On-chip CO2 control for microfluidic cell culture
Published: January 01, 2011
Abstract: Carbon dioxide partial pressure (PCO2) was controlled on-chip by flowing pre-equilibrated aqueous solutions through control channels across the device. Elevated PCO2 (e.g. 0.05 atm) was modulated in neighboring stagnant channels via equilibration through the highly gas permeable substrate, poly(dimethylsiloxane) (PDMS). Stable gradients in PCO2 were demonstrated with a pair of control lines in a source-sink configuration. PCO2 equilibration was found to be sufficiently rapid (minutes) and stable (days) to enable long-term microfluidic culture of mammalian cells. The aqueous solutions flowing through the device also mitigated pervaporative losses at sustained elevated temperatures (e.g. 37 C), as compared to flowing humidified gas through the control lines to control PCO2. Since pervaporation (and the associated increase in osmolality) was minimized, stopped-flow cell culture became possible, wherein cell secretions can accumulate within the confined environment of the microfluidic culture system. This strategy was utilized to demonstrate long-term (> 7 days) microfluidic culture of mouse fibroblasts under stopped-flow conditions without requiring the microfluidic system to be placed inside a cell culture incubator.
Citation: Royal Society of Chemistry
Volume: 11
Issue: 23
Pages: pp. 4041 - 4046
Keywords: Microfluidic, CO2, Gas permeable, cell culture
Research Areas: Medical Devices, Cell-Based
PDF version: PDF Document Click here to retrieve PDF version of paper (489KB)