Take a sneak peek at the new NIST.gov and let us know what you think!
(Please note: some content may not be complete on the beta site.).

View the beta site
NIST logo

Publication Citation: On-Board GPS Clock Monitoring for Signal Integrity

NIST Authors in Bold

Author(s): Marc A. Weiss; Pradipta Shome; Ron Beard;
Title: On-Board GPS Clock Monitoring for Signal Integrity
Published: November 15, 2010
Abstract: Navigation signal integrity is paramount for aviation and safety of life services. Hitherto GPS signal anomaly alerting has been provided primarily by ground based augmentations. Significantly improved navigation signal integrity and quality may be accomplished by On-board detection and correction, within stringent time-to-alert limits. In this way, most GPS signal errors, of which the time keeping system anomalies are the major source, could be eliminated. It would then be possible to provide signal integrity innately from the source constellation to specified service category levels that are enhanced to meet the integrity metrics of hazardously-misleading-information, time-to-alert, availability, continuity and accuracy. The method is to continuously monitor multiple atomic frequency standards with time-difference measurements against each other on-board the satellites, using existing components present in GPS architecture in a method similar to that routinely done in timing labs throughout the world. We focus in this paper on the issue of detecting and alleviating GPS clock anomalies using actual data illustrating frequency breaks in GPS clocks. These frequency breaks are derived from data taken in ground tests of Block IIR and Block IIF clocks. We also include some frequency breaks derived from on-orbit data. Using these data we discuss how on-orbit measurements could be used to detect and mitigate them, while also meeting stringent time-to-alert limits, such as 6 s or faster.
Proceedings: Precise Time and Time Interval 2010
Pages: pp. 465 - 479
Location: Reston, VA
Dates: November 15-18, 2010
Keywords: Navigation signal integrity,GPS signal anomalies,on-board integrity monitoring,dual-mixer measurement system
Research Areas: Physics, Time and Frequency