NIST logo

Publication Citation: Evolution of Microscopic Localization in Graphene in a Magnetic Field: From Scattering Resonances to Quantum Dots.

NIST Authors in Bold

Author(s): Suyong S. Jung; Gregory M. Rutter; Nikolai N. Klimov; David B. Newell; Irene G. Calizo; Angela R. Hight Walker; Nikolai B. Zhitenev; Joseph A. Stroscio;
Title: Evolution of Microscopic Localization in Graphene in a Magnetic Field: From Scattering Resonances to Quantum Dots.
Published: January 09, 2011
Abstract: Graphene is a unique material displaying high-mobility transport in monolayer-thin films. However, its properties are strongly dependent on interactions with substrates, local charges and environment. Scanned probe microscopies can be used to locally probe the effects of these interactions on graphene charge carriers, which are directly exposed at the surface. We use scanning tunneling spectroscopy (STS) to obtain a microscopic picture of localization at a level not attainable in previous measurements and identify new signatures of localization and interaction in the STS spectra. In zero magnetic field, we detect weakly localized states in the tunneling spectra, originating from substrate induced disorder, which follow the energy variation of the Dirac-point as the graphene charge density is changed with a gate potential. Under quantum Hall conditions when the electronic states are condensed into well defined Landau levels (LL), the character of the localization changes dramatically; the two‹dimensional electron gas breaks into a network of interacting quantum dots formed at the potential hills and valleys of the disorder potential.
Citation: Nature Physics
Volume: 7
Pages: pp. 245 - 251
Keywords: graphene, scanning tunneling microscopy, scanning tunneling spectroscopy, quantum Hall
Research Areas: Nanoelectronics and Nanoscale Electronics
PDF version: PDF Document Click here to retrieve PDF version of paper (7MB)