NIST logo

Publication Citation: Molecular Simulation Study of Anisotropic Wetting

NIST Authors in Bold

Author(s): Eric M. Grzelak; Vincent K. Shen; Jeffrey R. Errington;
Title: Molecular Simulation Study of Anisotropic Wetting
Published: March 10, 2010
Abstract: We study anisotropic wetting in systems governed by Lennard-Jones interactions. Molecular simulation is used to obtain the macroscopic contact angle a fluid adopts on face-centered-, body-centered-, and simple-cubic lattices with the (100), (110), or (111) face in contact with the fluid. Several amorphous substrates are also examined. For a given set of calculations, the atomistic density of the substrate and the particle-particle interactions remain fixed. These constraints enable us to focus on the extent to which substrate structure influences the contact angle. Three substrate-fluid interaction strengths are considered, which provide wetting conditions that span from near-dry to near-wet. Our results indicate that the manner in which particles are organized within the substrate significantly influences the contact angle. For strong substrates, a change in the substrate structure can change the cosine of the contact angle by as much as 0.5. We also examine how well certain structural and energetic features of the substrate-fluid system serve as suitable metrics for predicting the variation of the contact angle with substrate topography. Three parameters are considered: the density of atoms within the crystalline plane closest to the fluid, a measure of the effective strength of the substrate-fluid interaction, and the roughness of the solid-liquid interface. The effective strength of the substrate potential shows the strongest correlation with the contact angle. This energy-based parameter is defined in a general manner and therefore could serve as a useful tool for describing the anisotropic wetting of solids. In contrast, the metrics based on planar density and interface roughness are found to correlate contact angle data relatively weakly.
Citation: Langmuir
Volume: 26
Issue: 11
Pages: pp. 8274 - 8281
Keywords: Molecular simulation; wetting; thermodynamics; surfaces
Research Areas: Thermodynamics, Physical Properties