NIST logo

Publication Citation: Effect of Diamond Nanolubricant on R134a Pool Boiling Heat Transfer

NIST Authors in Bold

Author(s): Mark A. Kedzierski;
Title: Effect of Diamond Nanolubricant on R134a Pool Boiling Heat Transfer
Published: May 21, 2012
Abstract: This paper quantifies the influence of diamond nanoparticles on the boiling performance of R134a/polyolester mixtures on a roughened, horizontal, flat surface. Nanofluids are liquids that contain dispersed nano-size particles. A lubricant based nanofluid (nanolubricant) was made with a synthetic ester and 10 nm diameter diamond particles suspended in the mixture to roughly a 2.6 % volume fraction. For the 0.5 % nanolubricant mass fraction, the nanoparticles caused a heat transfer enhancement relative to the heat transfer of pure R134a/polyolester (99.5/0.5) as large as 129 % for the best performing tests. A similar enhancement was observed for the R134a/nanolubricant (99/1) mixture, which had a heat flux that was on average 91 % larger than that of the R134a/polyolester (99/1) mixture. Further increase in the nanolubricant mass fraction to 2 % resulted in boiling heat transfer degradation of approximately 19 % for the best performing tests. Due to the poor quality of the nanolubricant suspension, the performance of the (99.5/0.5) and the (98/2) nanolubricant mixtures decayed over time to, on average, 36 % and 76 % of the of pure R134a/polyolester performance, respectively. Thermal conductivity and viscosity measurements and a refrigerant\lubricant mixture pool-boiling model were used to suggest that increases in thermal conductivity and lubricant viscosity are mainly responsible for the heat transfer enhancement due to nanoparticles. Particle size measurements were used to suggest that particle agglomeration induced a lack of performance repeatability for the (99.5/0.5) and the (98/2) mixtures. From the results of the present study, it is speculated that if a good dispersion of nanoparticles in the lubricant is not obtained, then the agglomerated nanoparticles will not provide interaction with bubbles, which is favorable for heat transfer. Further research with nanolubricants and refrigerants are required to establish a fundamental understanding of the mechanisms that control nanofluid heat transfer.
Citation: Journal of Heat Transfer-Transactions of the ASME
Keywords: additives; boiling; diamond; enhanced heat transfer; nanotechnology; refrigerants; refrigerant/lubricant mixtures
Research Areas: Energy Efficiency, High Performance Buildings, Nanotechnology
PDF version: PDF Document Click here to retrieve PDF version of paper (987KB)