NIST logo

Publication Citation: Measuring Photocatalytic Response of Metal Oxide Fillers in Polymeric Films Using Electron Paramagnetic Resonance Spectroscopy

NIST Authors in Bold

Author(s): Stephanie S. Watson; I-Hsiang Tseng;
Title: Measuring Photocatalytic Response of Metal Oxide Fillers in Polymeric Films Using Electron Paramagnetic Resonance Spectroscopy
Published: March 18, 2009
Abstract: Metal oxide fillers, such as titanium dioxide (TiO2), are heavily utilized in polymeric coatings and plastics for opacification, pigmentation, and mechanical enhancement. It is well known that the photoreactivity of TiO2 can contribute to the degradation of the surrounding polymer matrix, due to the generation of electron-hole pairs that further react to form redox species. The aim of the present study is to examine the effects of the type (i.e. surface treatment) and concentration of filler on the degradation of two polymer systems, a degradable epoxy amine and a stable acrylic urethane. Electron paramagnetic resonance (EPR) spectroscopy is applied to study the generation of radicals from the polymer and the filler. The EPR spectra from filled polymer films with different loadings of TiO2 and diverse photoreactivity were analyzed to assess their contribution to photodegradation. A change in EPR signals from trapped holes and electrons on/in TiO2 surface/lattice are observed from the filled polymer samples and a correlation between these TiO2 surface species with the stability of the polymer-TiO2 system under intense UV exposure was established. It was found that a more stable EPR signal, or more efficiently trapped charge, indicates that photoinduced holes and/or electrons could have higher potential to participate in the photocatalytic reaction, which causes more severe degradation patterns in the films.
Proceedings: ACS Polymeric Materials: Science and Engineering Preprints
Location: Washington, DC
Dates: August 16-20, 2009
Keywords: EPR, photoreactivity, polymer, degradation, UV, TiO2
Research Areas: Building Materials, Materials Science
PDF version: PDF Document Click here to retrieve PDF version of paper (78KB)