Take a sneak peek at the new NIST.gov and let us know what you think!
(Please note: some content may not be complete on the beta site.).

View the beta site
NIST logo

Publication Citation: Minimum-Phase Calibration of Sampling Oscilloscopes

NIST Authors in Bold

Author(s): Andrew M. Dienstfrey; Paul D. Hale; Darryl A. Keenan; Tracy S. Clement; Dylan F. Williams;
Title: Minimum-Phase Calibration of Sampling Oscilloscopes
Published: August 15, 2006
Abstract: We describe an algorithm for determining the minimum phase of a linear time-invariant response function from its magnitude. The procedure is based on Kramers Kronig relations in combination with auxiliary direct measurements of the desired phase response. We demonstrate that truncation of the Hilbert transform gives rise to large errors in estimated phase, but that these errors may be approximated using a small number of basis functions. As an example, we obtain a minimum-phase calibration of a sampling oscilloscope in the frequency domain. This result rests on data obtained by an electrooptic sampling (EOS) technique in combination with a swept-sine calibration procedure. The EOS technique yields magnitude and phase information over a broad bandwidth, yet has degraded uncertainty estimates from dc to approximately 1 GHz. The swept-sine procedure returns only the magnitude of the oscilloscope response function, yet may be performed on a fine frequency grid from about 1 MHz to several gigahertz. The resulting minimum-phase calibration spans frequencies from dc to 110 GHz, and is traceable to fundamental units. The validity of the minimum-phase character of the oscilloscope response function at frequencies common to both measurements is determined as part of our analysis. A full uncertainty analysis is provided.
Citation: IEEE Transactions on Microwave Theory and Techniques
Volume: 54
Issue: 8
Pages: pp. 3197 - 3208
Keywords: Hilbert transform, Kramers Kronig relation, linear response functions, minimum phase, mismatch correction, oscilloscopes
Research Areas: Math
DOI: http://dx.doi.org/10.1109/TMTT.2006.879167  (Note: May link to a non-U.S. Government webpage)