Take a sneak peek at the new NIST.gov and let us know what you think!
(Please note: some content may not be complete on the beta site.).

View the beta site
NIST logo

Publication Citation: High Fidelity Transport of Trapped-Ion Qubits through an X-Junction Trap Array

NIST Authors in Bold

Author(s): Brad R. Blakestad; Aaron Vandevender; Christian Ospelkaus; Jason Amini; Joseph W. Britton; Dietrich G. Leibfried; David J. Wineland;
Title: High Fidelity Transport of Trapped-Ion Qubits through an X-Junction Trap Array
Published: April 17, 2009
Abstract: Trapped ions are a useful system for studying the elements of quantum information processing. Simple alogrithms have been demonstrated, but scaling to much larter tasks requires the ability to manipulate many qubits. To achieve this, ions could be distributed over separate trap zones in an array, where information would be shared between zones by moving the ions or connecting them with photons. In the first scheme, multi dimensional arrays incorporating junctions would increase computational efficiency by allowing ions, arbitrarily selected from various locations, to be grouped together for multi-qubit gates. Motional energy gained during transport reduces computational fidelity and increases the time required for ion recooling. Here, we report reliable transport of 9Be+ ions through an "X-junction" trap array with low energy gain and demonstrate the preservation of qubit coherence during transport. We also examine two sources of energy gain during transport: a particular radio-frequency (RF) noise heating mechanism and digital sampling noise.
Citation: Nature Physics
Volume: 102
Pages: 4 pp.
Keywords: atom trapping and cooling,computation,ion transport,ion trap array,ion trap junction,quantum computation,quantum information processing,quantum control,trapped ions
Research Areas: Physics, Quantum Physics
PDF version: PDF Document Click here to retrieve PDF version of paper (310KB)