NIST logo

Publication Citation: Rotation induced superfluid-normal phase separation in trapped Fermi gases

NIST Authors in Bold

Author(s): Menderes Iskin; Eite Tiesinga;
Title: Rotation induced superfluid-normal phase separation in trapped Fermi gases
Published: May 13, 2009
Abstract: We use the Bogoliubov-de Gennes formalism to analyze the effects of adiabatic rotation on the ground state phases of harmonically trapped Fermi gases. We find that the rotation breaks Cooper pairs that are located near the trap edge, and that this leads to a phase separation between the nonrotating superfluid (fully paired) atoms located around the trap center and the rigidly rotating normal (nonpaired) atoms located towards the trap edge with a coexistence (partially paired) region in between. Furthermore, we show that the rotation reveals a topological quantum phase transition: the superfluid phase that occurs in the coexistence region is characterized by a gapless excitation spectrum, and that it is distinct from the gapped phase that occurs near the trap center.
Citation: Physical Review A (Atomic, Molecular and Optical Physics)
Volume: 79
Issue: No 5
Pages: 5 pp.
Keywords: Rotating Fermi gases, Superfluid-normal phase separation, Topological quantum phase transition
Research Areas: Atomic Physics