Take a sneak peek at the new NIST.gov and let us know what you think!
(Please note: some content may not be complete on the beta site.).

View the beta site
NIST logo

Publication Citation: Design, Measurements and Performance Predictions for a Micromolded Refrigerant Expansion Device

NIST Authors in Bold

Author(s): David A. Yashar;
Title: Design, Measurements and Performance Predictions for a Micromolded Refrigerant Expansion Device
Published: April 03, 2006
Abstract: The design, fabrication and testing of a thermopneumatic microfabricated valve for controlling refrigerant mass flow rate during expansion is presented in this report. This device was fabricated through nickel electroplating within very thick SU-8 molds, thereby realizing expansion devices useful for small HVAC&R applications through an inexpensive modified UV-LIGA process. This work begins with process development to make meso-scale nickel electroplating within SU8 micromolds a feasible option. Then, two test apparatuses were constructed and used to benchmark the performance of a prototype with compressed air and refrigerant R134a. Next, three dimensional CFD simulations were performed on the flowfield within the device to predict it s ability to control compressed air. A numerical code was also developed to predict the device s temporal response and relationship between actuation level and power input. The assembled prototype was demonstrated on the air flow test bench. The prototype was able to reduce the mass flow rate of the compressed air by 22 % at the conditions used in the CFD analysis. The performance was then demonstrated in a 1.5-2 kW R134a vapor compression system. Steady state data showed that the mass flow rate of refrigerant could be effectively controlled using the valve. The level of refrigerant subcooling defined the magnitude of the response. Steady state data taken at 750 kPa inlet pressure shows the mass flow rate was reduced by 4.2 % at 1 C subcooling and up to 10.8 % at 5 C subcooling for a given level of actuation. Transient system response was characterized using cyclic actuation of the device in the HVAC system. The change in capacity was approximately 5 %, at the conditions used during these tests.
Citation: NIST Interagency/Internal Report (NISTIR) - 7327
Pages: 137 pp.
Keywords: HVAC&R,MEMS,microfabrication,refrigerant expansion,SU8
Research Areas: Cybernetic Building Systems
PDF version: PDF Document Click here to retrieve PDF version of paper (5MB)