Skip to main content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Simulations of Indoor Air Quality and Ventilation Impacts of Demand Controlled Ventilation in Commercial and Institutional Buildings

Published

Author(s)

Andrew K. Persily, A L. Musser, Steven J. Emmerich, Michael A. Taylor

Abstract

Carbon-dioxide (CO2) based demand controlled ventilation (DCV) offers the potential for more energy efficient building ventilation compared with constant ventilation rates based on design occupancy levels. A number of questions related to CO2-based DCV exist regarding potential energy efficiency benefits, optimal control strategies for different building types, and sensor performance and deployment. In addition, questions have been raised concerning the indoor air quality impacts, primarily with respect to contaminants with source strengths that are not dependent on the number of occupants. In order to obtain some insight into the issue of IAQ impacts of CO2-based DCV, a simulation study was performed in six commercial and institutional building spaces using the multizone airflow and IAQ model CONTAMW. These simulations compared six different ventilation strategies, with four of them using CO2 DCV, the simulations, performed for six U.S. cities, were used to compare ventilation rates, indoor CO2 levels, indoor concentrations of a generic volatile organic compound (VOC) as an indicator of non-occupant contaminant sources, and energy impacts. The results indicate that these impacts are dependent on the details of the spaces including occupancy patterns, ventilation rate requirements in the relevant standards and ventilation system operating schedule as well as the numerous assumptions used in the analysis, including contaminant source strengths and system-off infiltration rates. For the cases studied, the application of CO2 DCV resulted in significant decreases in ventilation rates and energy loads accompanied by increased indoor CO2 and VOC concentrations. The increases in CO2 were not particularly significant, in the range of 100 ppm (v). The indoor VOC levels increased by a factor of two or three, but the absolute concentrations were still relatively low based on the assumed emission rates. The annual energy load reductions due to the use of CO2 control were significant in most of the cases, ranging from 10% to 80% depending on the space type, climate and ventilation strategy.
Citation
NIST Interagency/Internal Report (NISTIR) -

Keywords

carbon dioxide, control, energy efficiency, indoor air quality, modeling ventilation, simulation, volatile organic compounds

Citation

Persily, A. , Musser, A. , Emmerich, S. and Taylor, M. (2003), Simulations of Indoor Air Quality and Ventilation Impacts of Demand Controlled Ventilation in Commercial and Institutional Buildings, NIST Interagency/Internal Report (NISTIR), National Institute of Standards and Technology, Gaithersburg, MD, [online], https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=860924 (Accessed April 24, 2024)
Created December 1, 2003, Updated February 19, 2017