Take a sneak peek at the new NIST.gov and let us know what you think!
(Please note: some content may not be complete on the beta site.).

View the beta site
NIST logo

Publication Citation: Development of Ultra-Low Magnetic Field Sensors With Magnetic Tunnel Junctions

NIST Authors in Bold

Author(s): Philip Pong; John E. Bonevich; William F. Egelhoff Jr.;
Title: Development of Ultra-Low Magnetic Field Sensors With Magnetic Tunnel Junctions
Published: October 31, 2007
Abstract: The discovery of tunneling magnetoresistance (TMR) has enhanced the magnetoresistance (MR) ratio from the giant magnetoresistance (GMR) regime of around 10% to over 400% at room temperature. A combination of magnetic tunnel junctions with high magnetoresistance ratio and soft magnetic layers enables the development of ultra-low magnetic field sensor with sensitivity down to the scale of picoTesla. A magnetic field sensor with such high sensitivity would have important applications in biomedicine, information storage, and remote sensing such as higher resolution images for cardiograph and magnetic resonance imaging and thus earlier detection of abnormal health condition; higher hard-disk density; and remote sensing of metallic objects. We have constructed an automated four-probe electrical measurement system for measuring TMR of magnetic tunnel junctions with high throughput, enabling us to optimize the properties of the devices. Magnetron sputtering is used to deposit thin films with thickness ranged from angstroms to nanometers. Photolithography and ion plasma etching are applied to pattern the devices. The devices have a range of size from 10 ?m x 10 ?m to 80 ?m x 80 ?m. The device is composed of the bottom electrode, free soft magnetic layer, insulating oxide layer, pinned layer, pinning layer, and top electrode. The magnetization of the free layer can be rotated by the external magnetic field which in turn changes the resistance of the device and provide the sensing capability. The system structure, design consideration, fabrication process, and preliminary experimental results are discussed and presented in this paper.
Citation: SPIE
Volume: 6645
Pages: 6 pp.
Keywords: magnetic field sensor,magnetic tunnel junction,magnetoresistance,soft magnetic layer,tunneling,Wheatstone bridge
Research Areas: Electron microscopy (EM, TEM, SEM, STEM), Nanostructures, Magnetic materials