NIST logo

Publication Citation: Prediction and Three-Dimensional Monte-Carlo Simulation for Tensile Properties of Unidirectional Hybrid Composites

NIST Authors in Bold

Author(s): Martin Y. Chiang; Xianfeng Wang; Carl R. Schultesiz;
Title: Prediction and Three-Dimensional Monte-Carlo Simulation for Tensile Properties of Unidirectional Hybrid Composites
Published: April 01, 2005
Abstract: A three-dimensional fiber tow-based analytical model incorporating shear-lag theory and a statistical strength distribution has been used to simulate the tensile properties and predict the tensile strength of unidirectional hybrid composites. The hybrid composites considered in this study contain two different types of fiber tows (glass/epoxy and carbon/epoxy tows) that are intimately mixed throughout the composite. The tow is defined as a fiber/matrix system (an impregnated tow) rather than a bundle of fibers.The properties of the tows used in the analytical model are derived using the rule-of-mixtures from the properties of the constituent materials and their volume fractions. For low levels of carbon fiber reinforcement, the low strain to failure of the carbon fibers can initiate failure and actually have a detrimental effect on strength. Otherwise, the study indicates that there are no synergistic effects of hybridization on the tensile properties, which consequently can be described for the most part using the rule-of-mixtures.
Citation: Journal of Mechanics
Volume: 65
Keywords: CFRP;GFRP;hybrid composites;Monte-Carlo simulation;rule-of-mixtures;tesile properties
Research Areas: Characterization, Polymers/Polymeric Composites, Statistics
PDF version: PDF Document Click here to retrieve PDF version of paper (273KB)