Take a sneak peek at the new NIST.gov and let us know what you think!
(Please note: some content may not be complete on the beta site.).

View the beta site
NIST logo

Publication Citation: The Use of Apertures to Create Discrete Combinatorial Libraries Using Pulsed Laser Deposition

NIST Authors in Bold

Author(s): Nabil Bassim; Peter K. Schenck; Eugene Donev; Edwin J. Heilweil; Eric J. Cockayne; Martin L. Green; Leonard Feldman;
Title: The Use of Apertures to Create Discrete Combinatorial Libraries Using Pulsed Laser Deposition
Published: May 18, 2007
Abstract: In Pulsed-Laser Deposition (PLD), there are many processing parameters that influence film properties which may be studied such as substrate-target distance, background reactive gas pressure, laser energy, substrate temperature and composition in multi-component systems. By introducing a 12.7 mm diameter circular aperture in front of a 76.2 mm silicon wafer and rotating the substrate while changing conditions during the PLD process, these parameters may be studied in a combinatorial fashion, discretely as a function of processing conditions. We demonstrate the use of the aperture technique to systematically study the effects of oxygen partial pressure on the film stoichiometry and growth rate of VOx, using Rutherford backscattering spectrometry (RBS). In another example, we discuss the effect of growth temperature on TiO2 films characterized by X-ray diffraction and Fourier Transform far-Infrared (Terahertz) absorption spectroscopy. We demonstrate that we have considerable combinatorial control of other processing variables besides composition in our combi-PLD system. These may be used to systematically study film growth and properties.
Citation: Applied Surface Science
Volume: 254
Pages: pp. 785 - 788
Keywords: apertures,combinatorial materials,oxygen stoichiometry,pulsed laser deposition,thin films
Research Areas: Characterization, Ceramics
PDF version: PDF Document Click here to retrieve PDF version of paper (713KB)