NIST logo

Publication Citation: Control of MEMS Nanopositioners With Nano-Scale Resolution

NIST Authors in Bold

Author(s): Jason J. Gorman; Yong Sik Kim; Nicholas G. Dagalakis;
Title: Control of MEMS Nanopositioners With Nano-Scale Resolution
Published: November 10, 2006
Abstract: Several approaches for the precision control of micro-scale positioning mechanisms, or MEMS nanopositioners, are presented along with initial experimental results which demonstrate nano-scale positioning resolution. The MEMS nanopositioners discussed in this paper are novel precision mechanisms comprised of a bent-beam thermal actuator and a flexure mechanism for each degree of freedom (DOF). These mechanisms can be used for a host of ultra-precision positioning applications, including nanomanipulation, scanning probe microscopy, high-density data storage and beam steering arrays. Concentrating on a 1 DOF MEMS nanopositioner, empirical static and dynamic models have been derived using characterization data obtained from experiments with optical and laser probe microscopes. Based on these models, three control approaches have been developed: 1) a quasi-static nonlinear open-loop controller, 2) a nonlinear forward compensator, and 3) a nonlinear PI controller. Simulation andinitial experimental results are presented, and the benefits of each of these approaches are discussed.
Conference: ASME International Mechanical Engineering Conference and Exhibition
Proceedings: Proceedings of the ASME International Mechanical Engineering Conference and Exhibition | 2006| ASME
Location: Chicago, IL
Dates: November 5-10, 2006
Keywords: MEMS;nanopositioner;precision motiion control
Research Areas: Nanomanufacturing
PDF version: PDF Document Click here to retrieve PDF version of paper (2MB)