Take a sneak peek at the new NIST.gov and let us know what you think!
(Please note: some content may not be complete on the beta site.).

View the beta site
NIST logo

Publication Citation: The dynamics of chip formation in machining

NIST Authors in Bold

Author(s): Matthew A. Davies; Christopher J. Evans; Timothy J. Burns;
Title: The dynamics of chip formation in machining
Published: January 01, 1997
Abstract: In this paper, we provide experimental, numerical and analytical evidence suggesting that the onset of segmented chip formation is the result of a Hopf bifurcation in the material flow. We modify the conventional one-dimensional model for orthogonal cutting by introducing the concept of a local plastic deformation zone that accounts for indentation of the material near the tool tip. A one-dimensional, partial differential equation (PDE) model, similar to those used to describe the formation of adiabatic shear bands is developed to describe chip formation. Numerical simulations of this model are compared with experimental results; both are suggestive of a Hopf bifurcation and the subsequent development of relaxation oscillations. Based upon these observations, a simplified ordinary differential equation model that treats the shear zone as a control volume moving with the tool is developed. These results lead to an interpretation of metal cutting as a thermomechanical feedback process, which is similar in many ways to an open chemical reactor
Proceedings: Proceedings of IUTAM Symposium of New Applications of Non-Linear and Chaotic Dynamics in Mechanics
Pages: pp. 183 - 192
Location: Ithaca, NY
Dates: July 1, 1998-July 1, 1997
Keywords: Chip Formation,Manufacturing Processes,Nonlinear dynamics
Research Areas: Metrology and Standards for Manufacturing Processes