Take a sneak peek at the new NIST.gov and let us know what you think!
(Please note: some content may not be complete on the beta site.).

View the beta site
NIST logo

Publication Citation: Micromagnetics of Domain Walls At Surfaces

NIST Authors in Bold

Author(s): M Scheinfein; John Unguris; J L. Blue; Kevin J. Coakley; Daniel T. Pierce; Robert Celotta; P J. Ryan;
Title: Micromagnetics of Domain Walls At Surfaces
Published: January 01, 1991
Abstract: High-spatial-resolution magnetization maps of ferromagnetic surfaces are generated with use of scanning electron microscopy with polarization analysis (SEMPA). The structure of surface Neel walls is measured by SEMPA and compared directly to the results of micromagnetics simulations. We find that the surface magnetic properties observed with SEMPA can be modeled using standard micromagnetic theory using only bulk parameters. Surface-domain-wall magnetization profiles were measured, using two different probe diameters in each case, for an Fe(100) single crystal and for Permalloy films with thicknesses of 0.12, 0.16, 0.20, and 0.24-mu-m. In making the quantitative comparison to the surface-domain-wall profiles calculated from (bulk) micromagnetic theory, the rms deviations, the chi-2 statistic, a correlation statistic, and rms deviations at 5% and 95% confidence levels were determined for each case. The calculated and measured domain wall profiles agree on the average to within +/- 7.8% for 180-degrees walls in semi-infinite crystals of Fe(100), and +/- 4.5% for 180-degrees walls in thin films of Permalloy. The micromagnetic simulations show the 180-degrees wall of the bulk turning over into a Neel wall at the surface with the magnetization in the plane of the surface. The Neel wall extends from the surface into the bulk over a depth approximately equal to a Bloch-wall width.
Citation: Physical Review B (Condensed Matter and Materials Physics)
Volume: 43
Issue: 4
Pages: pp. 3395 - 3422
Research Areas: Nanomagnetics