Take a sneak peek at the new NIST.gov and let us know what you think!
(Please note: some content may not be complete on the beta site.).

View the beta site
NIST logo

Publication Citation: Strain-Induced Grain Growth during Rapid Thermal Cycling of Aluminum Interconnects

NIST Authors in Bold

Author(s): Robert R. Keller; Roy H. Geiss; Nicholas Barbosa; Andrew J. Slifka; David T. Read;
Title: Strain-Induced Grain Growth during Rapid Thermal Cycling of Aluminum Interconnects
Published: January 01, 2007
Abstract: We demonstrate by use of automated electron backscatter diffraction (EBSD) the rapid growth of grains in non-passivated, sputtered Al-1Si interconnects during 200 Hz thermal cycling induced by alternating electric current. Mean grain diameters were observed to increase by more than 70 % after an accumulated cycling time of less than six minutes over a temperature range of 200 degrees C, which corresponded to a total strain range of 4 x 10-3. Plasticity in growing grains primarily took the form of topography formation at the free surface and grain rotation, while consumed grains tended to retain relatively high dislocation content. Grain growth was characterized by means of pairwise comparisons in EBSD pattern quality across moving boundaries. Out of 92 cases where a grain was observed to grow into its neighbor, 61 cases indicated that the growing grain had a higher average pattern quality factor than that of the consumed grain, at the 95 % confidence level. The results are consistent with a strain induced boundary migration mechanism, wherein stored plastic strain energy differences from grain to grain drive growth, some of which was observed after only 10 seconds of cycling.
Citation: Metal. Mater. Trans.
Volume: 38A
Pages: pp. 2263 - 2272
Keywords: electrical testing,grain growth,interconnect reliability,thermal fatigue,thin film reliability
Research Areas: Electronics & Telecommunications
PDF version: PDF Document Click here to retrieve PDF version of paper (528KB)