NIST logo

Publication Citation: Precision Differential Sampling Measurements of Low-Frequency Synthesized Sine Waves with an AC Programmable Josephson Voltage Standard

NIST Authors in Bold

Author(s): Alain Rufenacht; Charles J. Burroughs; Samuel P. Benz; Paul D. Dresselhaus; Bryan C. Waltrip; Thomas L. Nelson;
Title: Precision Differential Sampling Measurements of Low-Frequency Synthesized Sine Waves with an AC Programmable Josephson Voltage Standard
Published: April 01, 2009
Abstract: We have developed a precision technique to measure sine wave sources with the use of a quantum-accurate ac programmable Josephson voltage standard. This paper describes a differential method that uses an integrating sampling voltmeter to precisely determine the amplitude and phase of high purity and low frequency (a few hundred Hz or less) sine wave voltages. We have performed a variety of measurements to evaluate this differential technique. After averaging, the precision obtained in the determination of the rms amplitude of a 1.2 V sine wave with a frequency of 50 Hz is on the order of 3 parts in 107. Finally, we propose a dual waveform approach for measuring two precision sine waves with the use of a single Josephson system. Currently, NIST is developing a new calibration system for electrical power measurements based on this technique.
Citation: IEEE Transactions on Instrumentation and Measurement
Volume: 58
Issue: 4
Pages: pp. 809 - 815
Keywords: Digital-analog conversion; Josephson arrays; Quantization; Signal synthesis; Standards; Superconductor-normal-superconductor devices; Voltage measurement; Power Measurement
Research Areas: Quantum Electrical Measurements
PDF version: PDF Document Click here to retrieve PDF version of paper (801KB)