NIST logo

Publication Citation: A frequency-domain read-out technique suitable for large microcalorimeter arrays demonstrated using high-resolution cryogenic gamma-ray sensors

NIST Authors in Bold

Author(s): Joel N. Ullom; M. Cunningham; T. Miyazaki; S. E. Lebov;
Title: A frequency-domain read-out technique suitable for large microcalorimeter arrays demonstrated using high-resolution cryogenic gamma-ray sensors
Published: June 01, 2003
Abstract: Cryogenic sensors composed of transition-biased superconducting films have demonstrated remarkable sensitivity at gamma-ray, x-ray, optical, and submillimeter wavelengths. However, for these sensors to find widespread application in astronomy and materials analysis, technologies for building and reading-out large arrays are required. We are currently developing a frequency-domain multiplexing scheme for the read-out of large numbers of microcalorimeters using a much smaller number of amplifiers. In this scheme, each sensor is biased at an identifying frequency and operated in a series LC circuit to suppress out-of-band noise. Here, we present results demonstrating the undegraded operation of two gamma-ray sensors multiplexed using this technique. In addition, we provide a series of design rules which relate the minimum bias frequency and the values of the reactive elements in the system to a small number of sensor properties. Finally, we discuss the ultimate limits on the number of sensors that can be measured with a single amplifier.
Citation: IEEE Transactions on Applied Superconductivity
Volume: 13
Issue: 2
Pages: pp. 643 - 648
Keywords: microcalorimeters;multiplexing;SQUIDs;transition-edge sensors;
Research Areas: Sensors