NIST logo

Publication Citation: Low probability of detection underwater acoustic communications using direct-sequence spread-spectrum

NIST Authors in Bold

Author(s): Wen-Bin Yang; T.C. Yang;
Title: Low probability of detection underwater acoustic communications using direct-sequence spread-spectrum
Published: December 01, 2008
Abstract: Direct-sequence spread-spectrum underwater acoustic communications are analyzed in this paper between communication nodes, at least one of which is moving. At-sea data are analyzed which show that the phase change due to source motion is significant. The differential phase between two adjacent symbols is often larger than the phase difference between symbols. One finds that the simple cross-correlation method that detects the inter-symbol phase change without requiring channel equalization does not work when the source or receiver is moving. A pair of energy detectors that are insensitive to the phase fluctuations, are proposed, whose outputs are used to determine whether adjacent symbols are of the same kind or opposite kind. The method shows good results for input signal-to-noise ratio (SNR) as low as 8 dB. The purpose of low SNR communications is to minimize the probability of detection (PD) by an interceptor. PD is analyzed as a function of range to the interceptor assuming a source level high enough to communicate to an intended (friendly) receiver. The analysis is conducted in a typical shallow water environment. A broadband energy detector is employed assuming signal bandwidth is known.
Citation: Journal of the Acoustical Society of America
Volume: 124
Issue: 6
Pages: pp. 3632 - 3647
Keywords: Low-Probability of Detection Underwater Acoustic Communications
Research Areas: Electronics & Telecommunications, Wireless
PDF version: PDF Document Click here to retrieve PDF version of paper (536KB)