NIST logo

Publication Citation: Transient Heating Study of Microhotplates by Using a High-Speed Thermal Imaging System

NIST Authors in Bold

Author(s): Muhammad Y. Afridi; David W. Berning; Allen R. Hefner Jr; John S. Suehle; Mona E. Zaghloul; Eric Kelley; Zharadeen R. Parrilla; Colleen E. Hood;
Title: Transient Heating Study of Microhotplates by Using a High-Speed Thermal Imaging System
Published: March 01, 2002
Abstract: A high-speed thermal imaging system is used to investigate the dynamic thermal behavior of MEMS-based (MicroElectroMechanical Systems) microhotplate devices. These devices are suspended microstructures fabricated in CMOS technology and are used in various sensor applications. Measurements reveal delayed surface heating of the microhotplate and temperature redistribution during both the heating and cooling phases. Reflected infrared (IR) radiation from the hidden backside of the heater is used with a normalization technique to determine peak heater temperature. The measured results are shown to be useful in optimizing the design of microhotplate structures. It is found that the use of a heat-spreading layer improves the local temperature uniformity between the heater strips. It is also found that the use of the thinner layers of the 1.5-um CMOS-based technology improves the global temperature uniformity over the top surface of the microhotplate.
Conference: IEEE SEMI-THERM SYMPOSIUM
Proceedings: Proc., SEMI-THERM
Pages: pp. 92 - 98
Location: San Jose, CA
Dates: March 12-14, 2002
Keywords: High-Speed Thermal Imaging;MEMS;Microhotplate;Thermal Characterization;Thermal Imaging;Thermal Transient Imaging;
Research Areas: Electronics & Telecommunications
PDF version: PDF Document Click here to retrieve PDF version of paper (1MB)